Mikhlin-Hormander theorem for Morrey spaces


In the last post we given a proof of the following theorem.

Theorem 1 (Mikhlin-Hormander theorem) Let {k>n/2} and {\sigma\in C^{k}(\mathbb{R}^{n}\backslash\{0\})}. If for {\vert\gamma\vert\leq k} we have

\displaystyle \sup_{r>0}r^{\vert \gamma\vert}\left(\frac{1}{r^n}\int_{\frac{r}{2}<\vert\xi\vert<2r}\vert (D^{\gamma}_{\xi}\sigma)(\xi)\vert^{2}d\xi\right)^{\frac{1}{2}}\leq L \ \ \ \ \ (1)

then {T_{\sigma}:=\mathcal{F}^{-1}\sigma(\xi)\mathcal{F}f} is a Fourier multiplier on {L^p}, {1<p<\infty}. In particular, {T_{\sigma}} is a Fourier multiplier on {L^p} if {\sigma\in\Sigma_1^0(\mathbb{R}^n)}, that is, if

\displaystyle \vert D^{\gamma}\sigma(\xi)\vert \leq L \vert \xi\vert ^{-\vert\gamma\vert},\;\xi\neq 0. \ \ \ \ \ (2)

In this post, we would like to extend this theorem for a class of Morrey-type spaces. In other words

Theorem 2 Let {1<p<\infty} and {0<\mu<n}. If {\sigma \in\Sigma_{1}^{0}(\mathbb{R}^{n})}, the Fourier multiplier {T_{\sigma}} on {L^{p}} can be extended to {\mathcal{M}_{p,\mu}}, that is, there exists {C>0} such that

\displaystyle \Vert T_{\sigma}f\Vert_{\mathcal{M}_{p,\mu}}\leq C\,L\Vert f\Vert_{\mathcal{M}_{p,\mu}}, \ \ \ \ \ (3)

for all {f\in\mathcal{M}_{p,\mu}}.

 Proof. A proof can be found in [Taylor] (see also [Kozono1Kozono2]. For reader convenience we give some details. This key theorem was important in my recent article in join with Ferreira, Lucas C.F.

We have that {T_{\sigma}} is a convolution operator with kernel {k_{\sigma}(z)=(\sigma(\xi))^{\vee}(z)}. As {\sigma\in \Sigma_1^0} it follows from [p.26, Stein] that

\displaystyle \vert \partial_{z}^{\gamma}k_{\sigma}(z)\vert\leq C L |z|^{-n-\vert\gamma\vert},\; z\neq 0, \ \ \ \ \ (4)

Based in (4) and Minlin-Hormander theorem we obtain a proof of the Theorem 2. Indeed, firstly one splits {f\in\mathcal{M}_{p,\mu}(\mathbb{R}^{n})} as

\displaystyle f=f_{0}+\sum_{j=1}^{\infty}g_{j},

where

\displaystyle f_{0}=\chi_{B_{2r}(x_{0})}f,\text{ }\,g_{j}=f\chi_{A_{rj}}\text{ and } A_{rj}=\{x\,:\,2^{j}r\leq|x_{0}-x|\leq2^{j+1}r]\}.

Defining {k_{j}(x,y)=\chi_{B_{r}(x_{0})}(x)k(x-y)\chi_{A_{rj}}(y)} and {T_{\sigma,j}(f)(x)=\int_{\mathbb{R}^{n}}k_{j}(x,y)f(y)dy} easily gets by Hölder inequality and estimate (4) the following

\displaystyle \begin{array}{rcl} \vert T_{\sigma,j}(f)(x)\vert^{p}&\leq& \left(\int_{\mathbb{R}^{n}}\vert k_{j}(x,y)f(y)\vert dy\right)^{p}\\ \\ &\leq& \left(\int_{\mathbb{R}^{n}}\vert k_{j}(x,y)\vert dy\right)^{p/q}\int_{\mathbb{R}^{n}}\vert k_{j}(x,y)\vert\, \vert f(y)\vert^{p} dy\\ \\ &=&\left(\int_{A_{rj}(x_0)}\chi_{_{D_{r}(x_0)}}(x)\vert k_{\sigma}(x-y)\vert dy\right)^{p/q}\int_{\mathbb{R}^{n}}\vert k_{j}(x,y)\vert\, \vert f(y)\vert^{p} dy\\ \\ &\leq& \left(CL(2^{j}r)^{-n} vol(A_{rj}(x_0))\right)^{p/q}\int_{\mathbb{R}^{n}}\vert k_{j}(x,y)\vert\, \vert f(y)\vert^{p} dy\\ \\ &\leq& C L^{p/q}\int_{\mathbb{R}^{n}}\vert k_{j}(x,y)\vert\, \vert f(y)\vert^{p} dy, \end{array}

where {q} denotes the conjugate exponent of {p}. Using Tonelli’s theorem and once more estimate (4) we have

\displaystyle \begin{array}{rcl} \int_{\mathbb{R}^{n}}\vert T_{\sigma,j}(f)(x)\vert^{p}dx &\leq& CL^{p/q} \int_{\mathbb{R}^{n}}\vert k_{j}(x,y)\vert dx \int_{\mathbb{R}^{n}}\vert f(y)\vert^{p}dy\\ \\ &=& CL^{p/q} \int_{D_{r}(x_0)}\vert k_{\sigma}(x-y)\vert\chi_{_{A_{rj}}}(y) dx \int_{\mathbb{R}^{n}}\vert f(y)\vert^{p}dy\\ \\ &\leq& CL^{p/q+1} 2^{-jn} \int_{\mathbb{R}^{n}}\vert f(y)\vert^{p}dy. \end{array}

Now we ready to proof the theorem. By Mikhlin-Hormander theorem and the last estimate one has

\displaystyle \begin{array}{rcl} \left\Vert T_{\sigma}f\right\Vert _{L^{p}(B_{r}(x_{0}))} & \leq&\left\Vert T_{\sigma}f_{0}\right\Vert _{L^{p}(\mathbb{R}^{n})}+\sum_{j=1}^{\infty}\left\Vert T_{\sigma}g_{j}\right\Vert _{L^{p}(B_{r}(x_{0}))}\nonumber\\ \\ & \leq& CL\left\Vert f_{0}\right\Vert _{L^{p}(\mathbb{R}^{n})}+\sum_{j=1}^{\infty}\left\Vert T_{\sigma,j}(\chi_{A_{rj}}f)\right\Vert_{L^{p}(\mathbb{R}^{n})}\nonumber\\ \\ &\leq& CL\left\Vert f_{0}\right\Vert _{L^{p}(\mathbb{R}^{n})}+\sum_{j=1}^{\infty}\left(\int_{\mathbb{R}^n} \vert T_{\sigma,j}(\chi_{A_{rj}}f(x))\vert^{p}\right)^{\frac{1}{p}}\nonumber\\ \\ & \leq& CL\left\Vert f\right\Vert _{L^{p}(B_{2r}(x_{0}))}+\sum_{j=1}^{\infty}CL^{(p/q+1)/p}2^{-jn/p}\left\Vert \chi_{A_{rj}}f\right\Vert_{L^{p}(\mathbb{R}^{n})}\nonumber\\ \\ & \leq&2^{\frac{\mu}{p}}CL\left\Vert f\right\Vert _{p,\mu}r^{\frac{\mu}{p}}+CL^{1/q+1/p}\sum_{j=1}^{\infty}2^{-jn/p}\left\Vert f\right\Vert _{p,\mu}(2^{j}r)^{\frac{\mu}{p}}\nonumber\\ \\ & \leq& 2C(1+\sum_{j=1}^{\infty}2^{-j(\frac{n-\mu}{p})})L\left\Vert f\right\Vert _{p,\mu}r^{\frac{\mu}{p}}, \end{array}

which yields (3), because the series above is convergent.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s